CCS'17 Real-World Impact Award for Mathy's work on Key Reinstallation Attacks

vanhoef

 

November 3, 2017. At ACM CCS 2017 Mathy received the 'Real-World Impact Award' for his paper on Key Reinstallation Attacks. This newly-created award recognizes papers with a large immediate impact.

 

 

ABSTRACT: Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2

The key reinstallation attack abuses design or implementation flaws in cryptographic protocols to reinstall an already-in-use key. This resets the key’s associated parameters such as transmit nonces and receive replay counters. Several types of cryptographic Wi-Fi handshakes are affected by the attack. All protected Wi-Fi networks use the 4-way handshake to generate a fresh session key. So far, this 14-year-old handshake has remained free from attacks, and is even proven secure. However, we show that the 4-way handshake is vulnerable to a key reinstallation attack. Here, the adversary tricks a victim into reinstalling an already-in-use key. This is achieved by manipulating and replaying handshake messages. When reinstalling the key, associated parameters such as the incremental transmit packet number (nonce) and receive packet number (replay counter) are reset to their initial value. Our key reinstallation attack also breaks the PeerKey, group key, and Fast BSS Transition (FT) handshake. The impact depends on the handshake being attacked, and the data-confidentiality protocol in use. Simplified, against AES-CCMP an adversary can replay and decrypt (but not forge) packets. This makes it possible to hijack TCP streams and inject malicious data into them. Against WPATKIP and GCMP the impact is catastrophic: packets can be replayed, decrypted, and forged. Because GCMP uses the same authentication key in both communication directions, it is especially affected. Finally, we confirmed our findings in practice, and found that every Wi-Fi device is vulnerable to some variant of our attacks. Notably, our attack is exceptionally devastating against Android 6.0: it forces the client into using a predictable all-zero encryption key.

 

ReinstallationAttack